Cumulin: a new oocyte-secreted factor of potential use as an IVM media additive

David G. Mottershead

Mottasis Oy Ltd, Helsinki, Finland

Robinson Research Institute, School of Medicine, University of Adelaide, Australia.

Oocyte-Secreted Factors GDF9 & BMP15 Regulate Granulosa Cells and Oocyte Developmental Competence

GDF9 and BMP15 as TGF-β family members

- TGF- β family mature regions normally form covalent dimers
- GDF9 & BMP15 lack 4th Cys of the 7 conserved Cys usually found in the mature region, hence they form non-covalent dimers

GDF9/BMP15 Synergism

utilizing mouse primary g

purified mature regions of GDl and BMP15 (R&D Systems)

GDF9/BMP15 Synergism on Cumulus Cells

GDF9/BMP15 synergism is mediated via the SMAD3 pathway

What is the mechanistic basis of GDF9 / BMP15 synergism?

Can GDF9 and BMP15 form a covalent heterodimer?

- Co-expressed in HEK-293T cells
- Serum-free production media mixed with IMAC resin
- Final step rpHPLC

GDF9/BMP15 covalent heterodimer is bioactive

GDF9:BMP15 heterodimer bioactivity comparison

• on mouse primary granulosa cells

Pro-Mature proteins

Pro-cumulin (non-covalent heterodimer)

Cumulin activates both SMAD signaling pathways

• in human COV434 granulosa tumour cells

BMP15 covalent homodimer does not synergize with GDF9

utilizing mouse primary granulosa cells

Cumulin activates gene expression associated with cumulus differentiation

on mouse primary mural granulosa cells

proCumulin stimulates developmental competence in the porcine IVM model

Key Findings 1

1). It is possible to produce a GDF9/BMP15 mature region covalent heterodimer, which is very bioactive.

2). For DNA synthesis in granulosa cells cumulin [1] is the most active form, followed by pro-cumulin [2], and finally the GDF9 + BMP15 [3] combination.

Key Findings 2

3). The BMP15 covalent homodimer does not synergize with wild type GDF9, a further indication that the basis of GDF9/BMP15 synergism is heterodimerization.

4). Pro-cumulin [2] stimulates oocyte developmental competence, whereas cumulin [1] (mature region only) does not!!

Model of human GDF9/BMP15 action in vivo

Potential Uses of Cumulin in Reproductive Medicine

- 1). IVM media development?
- 2). Ovarian cryopreservation?

3). Measurement of Cumulin levels for oocyte selection?

Acknowledgements

Robinson Research Institute, University of Adelaide.

David Mottershead Research, Melbourne

Craig Harrison

Robert Gilchrist* Sara Al-Musawi

Melissa White

Jing-Jie Li
Satoshi Sugimura

Julius-von-Sachs Institute
University Wuerzburg

Lesley Ritter Thomas Mueller

Georgia Martin

Jaqueline Sudiman

Andrew Trotta

Funding

Jun-Yan Shi

NUMBO A vetralia

- NHMRC Australia

- COOK Medical

- Faculty of Health Sciences, University of Adelaide

Hudson Institute of Medical

^{*}current affiliation: School of Women's & Children's Health, Royal Hospital for Women, University of New South Wales, Sydney, Australia.