

Realtime monitoring the IVF laboratory: Practical aspects

Ronny Janssens – Quality manager

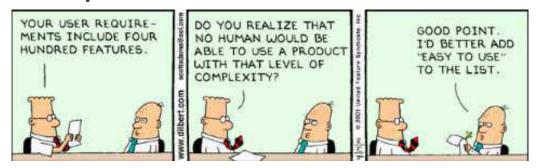
Disclosure

I declare that no commercial or financial interest has influenced the content of this presentation

All is well... till disaster strikes you!

 Remember captain Smith (15 april 1912)

 Murphy's law: if anything can go wrong, it will go wrong


Real time monitoring: why?

- Economical aspect prevent loss
- Guidelines
 - → ESHRE (Hum Reprod Vol 23, no 6, 2008)
- Regulatory aspect
 - → 2006/86/EC (annex I Equipment and materials C - §2)
 - → HFEA code of practice
- Accreditation
 - → ISO 15189

Outline

User requirement specifications

Things to consider before installation

What to monitor? - examples

Outline

User requirement specifications (or how to design your perfect system)

- → Data logging
- → Functional requirements
- → Sensors
- → GUI
- → Alarms
- → Reports
- → Security
- → Validation

Data logging – 21 CFR Part 11 requirements

- Tamper proof
- Accurate time and date stamps
- Alarms and events
- User actions and details (e.g. setpoint changes)
- User notes
- Electronic Signatures
- Login/Logout

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11

Functional requirements

- Scalable (single room to ...)
- Accurate and effective control of equipment
- Centralized and remote control
- Real time monitoring
- Intelligent alarm capability-early warning of process deviations
- Secure management and storage of data
- Audit trails
- Predictive maintenance planning

Available sensors/interphase

Analog

- Temperature
- Gas level (CO₂ O₂ VOC)
- RH
- Air pressure/diffential pressure
- Luminescence
- Particle counters
- Air Flow patterns
- Vibration
- Noise

Water leak detection

Digital signals (true/false)

- Door status
- Fire detectors
- HVAC status
- Alarm signals

Digital signals

- RS 232
- RS 485

9

Why independent sensors?

- Verification of equipment functioning
- Detects equipment sensor drift
- Verification of manufacturers' performance claims
- Transparent and unbiased
- Audit trail historical overview
- Detects environmental factors
 - → Electrical failure

GUI

Web based vs client server

- → Web based system are more flexible and can be more easily accessed remotely (secure internet)
- → multi platform, Windows, Linux, Apple OS, Android?

GUI

- Area overview
- Individual room overview
- Individual sensor view
- Grouping by type (temp, CO2, ...)

Historical display – trending

Remote real-time visualisation

GUI

- Access control with password protection for individual user accounts, inactivity timeout and password expiry
- Alarms
- Trends
- Alarm set point configuration
- Control parameter configuration
- Calibration facilities
- Maintenance facilities

Alarms

Functional alarms

- → Absolute immediate alarm real time
- → Delayed alarms
- → Continuous alarm
 - measured value beyond minimum/maximum over a certain time

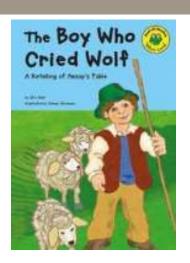
Technical alarms

- → Sensor break
- → Equipment failure
- → Network failure
- → Maintenance and calibration alarm

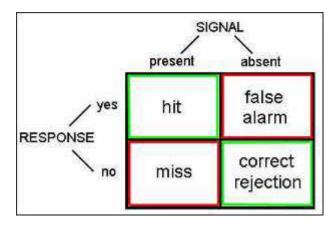
Universitair Ziekenhuis Brusse

Notification

- Audible
- Visible
- Telephone email SMS



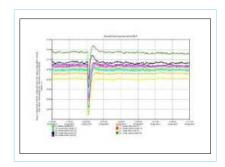
- Automatic cascading
- Bi-directional, alarm acknowledgement logged



False alarm – missed alarm

Alarm fatigue

Costs



Reports

Reports for full compliancy

- → Graphical reports
- → Numerical reports
- → Multi parameter graphs
- → Statistical analysis (mean, min, max, SD)
- → Data exportable to spreadsheet

Security

Wireless vs wired

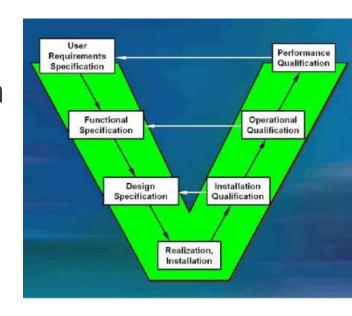
- → Wired: harder to install, more reliable, insensitive to long distances
- → Wireless: easy to install, flexible, can be unreliable
 2015: the redundancy in wireless networks makes these devices almost as reliable as wired units, and greatly reduces installation cost
- → Data from multiple locations
- → Clean rooms can be hard wired, remote location can be wireless

Best of both worlds

- → Probe to controller: wired
- → Controller to server: wireless/network

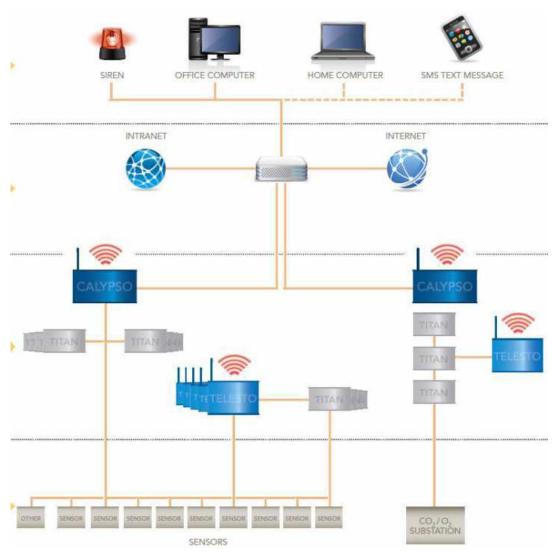
Remote access: secure VPN access combined with multiple firewalls, user-based security.

Validation


Manufacturer

- → User Requirement Specification
- → Functional Specification
- → Design Specification
- → Hardware Testing
- → Code Review
- → Factory Acceptance Test

User


- → Installation Qualification
- → Operational Qualification

Real time monitoring: architecture

Outline

User requirement specifications

Things to consider before installation

What to monitor? - examples

During laboratory design phase

 Integration with BMS/EMS (building monitoring systems/environmental monitoring)

- Do not forget!
 - → Power plugs +++
 - → Network access points +++
 - → WIFI
 - → UPS

Which commercial system?

Experience in IVF - Consultancy?

- → most laboratory directors have little experience in building IVF laboratories or implementing monitoring systems
- → Integrating devices into a complete solution is a difficult task
- → Making the wrong decisions can result in a huge cost and a non-functioning monitoring system

Support

- → support needs to be quickly and reliably
 - telephone 24/7
 - remote support

Calibration

- ISO 15189 requirement
 - → Calibration ISO 17025
 - → Traceability to international standards
- On site

- Service/maintenance contract
 - → Check Accuracy & stability of sensors
 - → Check/change batteries
 - → Hardware + software maintenance

Outline

User requirement specifications

Things to consider before installation

What to monitor? - examples

Real time monitoring @ UZ Brussel

Parameter	Matrix	Frequency	Device	
VOC	Laboratory Air	Continuous	PID VOC meter	
T°	Laboratory Air	Continuous	BMS/EMS Pt100	
Т°	Incubator	Continuous	Pt100	
T°	Refrigerators/freezers	Continuous	Pt100	
T°	Cryostorage	Continuous	Pt100	
LN ₂ level	Cryostorage	Continuous	Pt100/pressure sensor	
CO ₂	Incubators	Continuous	NDIR gasanalyser	
O_2	Incubator	Continuous	ZrO ₂ sensor	
O_2	Air	Continuous	ZrO ₂ sensor	
Door status	Freezer	Continuous	Digital contact	
True/false	Cryostorage, incubator alarms	Continous	Alarm contact	
RH	Air	Continuous	BMS/EMS	

Other monitoring @ UZ Brussel

Parameter	Matrix	Frequency	Device
T°	Heated stages	1 – 2 / year	Thermocouple in dish
рН	Culture media	Each batch/shipment	POC
Osmolality	Culture media	Each batch/shipment	Osmometer
O_2	Incubators	Weekly	ZrO ₂ sensor/gasanalyser
RH	Incubators	NA	

TVOC monitoring

- PID detection
- 0-10 ppm
- 4-20 mV output

www.ionscience.com

www.mtg-de.com

Incubators & independent monitoring

	Incubator	Design	Monitoring
	Standard	Large volume, easy access	Easy
	Mini	Small chambers	Difficult
		No sensors build in	Needs special sensors
T	Desktop	Small chambers	Independent sensors possible
	•	(Alarm contact)	Equipment alarm
:::::			
	Time lapse	Without independent sensors	Not possible
		With independent sensors	Easy
		(Alarm contact)	Equipment alarm

Standard inc: T°, CO₂, (O₂, RH, door contact)
Bench top/time lapse: T°, CO₂, incubator alarm

NDIR CO2 sensors

Vaisala

Planer

Cryogenic storage

Real-time liquid level & temperature measurements

- Filling action
- Lid movements
- Power failure
- Technical system alarm

Environment: O₂

Other

- Fridges, freezers: T°, door alarm
- Rate controlled freezers

- To consider:
 - → Particle counting

→ Optical spectroscopy counting simultaneously detect the number and size of particles from air ('real-time' microbiological assessment.)

Monitoring Costs

To Alarm or Monitor? A cost-Benefit Analysis Comparing Laboratory Dial-Out Alarms and a Real-Time Monitoring System. Mortimer D., Di Berardino T. Alpha Newsletter august 2008

Table 3: Summary comparison of the costs of using either alarms with "human" equipment monitoring or automated real-time monitoring systems (see Tables 1 and 2 for details).

System	Small Lab	Medium Lab	Large Lab
Alarms & manual monitoring, Year 1	€14,349	€38,822	€83,754
add Years 2 & 3 (inc. 3% inflation)	€65,797	€147,476	€311,412
Automated real-time system	€56,309	€104,227	€256,392
Savings by the end of Year 3	€9,488	€43,249	€55,020

"it is clear that, even for a small laboratory, an automated system can represernt not just increased functionality, but a modest saving within three years"

Real time monitoring: conclusions

- 1. It is a requirement
- 2. It is feasable
- 3. All parameters can be monitored/alarmed
- Can avoid equipment failure cost
- 5. It is affordable

Become a winner!

References

CAS dataloggers

www.dataloggerinc.com

Esco PROtect

www.escoglobal.com

KETAN – Shivani Scientific www.shivaniivf.com

OCTAX - MTG

www.mtg-de.com

ReAssure - Planer

www.planer.com

XiltriX - IKS

www.iksinternational.com

